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An ldealized Zeek Cluster
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Zeek Cluster Roles

Worker: sniffs network traffic and runs protocol analysis
Manager: collects events and creates a single, global view
Proxy: offloads data storage or runs arbitrary work loads

Logger: (optional) collects logs to reduce load on the manager



Zeek Cluster Challenges

Data dependencies: which data an instance receives depends on the role
Flexible deployment: users may add a logger and multiple proxies
State synchronization: some modules / scripts need global view of events

Interfacing with 3rd parties: users may want to integrate external tools



A Messaging Layer for Zeek

* We can fulfill our requirements with two building blocks:
1. A topic-based publish/subscribe layer
 Naturally models data dependencies via topics
o Supports flexible deployments (publisher/subscriber rendezvous)
2. Distributed key/value stores
* Global lookup and updates of values for synchronization

 Based on these considerations, implementing Broker started mid 2014



Broker Setup & API



Overview

Open Source C++ library with Python bindings (BSD-licensed)

Available on GitHub: https://github.com/zeek/broker

Requires recent versions of CMake, OpenSSL and CAF

Usually comes bundled with Zeek but also works as standalone library


https://github.com/zeek/broker
https://cmake.org/
https://www.openssl.org/
https://www.actor-framework.org/
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A single Broker context / process

Authoritative data store source

Local data store cache



Endpoints

O

* Broker connects endpoints via peering relations
 Each peering is a (TCP) network connection

 Endpoints forward published data to peers with matching subscriptions



Peerings

Require manual setup of the topology (no auto connections / discovery)

To open a TCP port for incoming peerings: 1isten (addr, port)
To connect to another endpoint: peer (host, port)

Caution: Broker assumes loop-free topologies!

> More on that later



Peering Setup: Zeek Scripts

event zeek 1nit ()

{

event

{
print "peer added",

J

event

{

print "peer lost",

()

J

redef exilt only after terminate = T;

("127.0.0.1"); <

(endpoint:

endpolnt;

(endpoint:

endpolnt;

Passing no port uses

the default via redef)

Broker::default port (9999
by default, but you can override

Broker: :EndpoilntInfo,

Broker: :EndpolntInfo,

msg :

msq :

string)

string)

Listener



Peering Setup: Zeek Scripts

redef exilt only after terminate = T;

event zeek 1nit ()

{
("127.0.0.1") ;

event (endpoint: Broker::EndpointInfo, msg: string)

{

print "peer added", endpoilint;

()
}

Connector




Peering Setup: Python

1mport broker

with broker.Endpoint() as ep:

with ep.make_status_subscriber(True) as ssub:

ep.listen("127.0.0.1", 9999)
state = ssub.get()
# On a successful connect, we see:

# state.code() == broker.SC.PeerAdded

Listener

1mport broker

with broker.Endpoint() as ep:
with ep.make_status_subscriber(True) as ssub:
ep.peer("127.0.0.1", 9999)
state = ssub.get()
# On a successful connect, we see:
# state.code() == broker.SC.PeerAdded

Connector




Peering Setup: C++
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int main(int argc, charxx argv) {

using namespace broker;
configuration cfg;
cfg.init(arge, argv); // may throw!

endpoint ep{std: :move(cfqg)};

auto ssub = ep.make_status_subscriber(true); Replace with

auto actual_port = ep.listen("127.0.0.1", 9999): << ep.peer(...) for
if (actual_port == 0) { the connector.

std: :cerr << "unable to open port 9999\n":
return EXIT_FAILURE;
}
auto stat = ssub.get();
if (is<status>(stat)) {
// contains a status, e.g., sc::peer_added
} else if (is<errory>(stat)) {
// contains an error, e.g., ec::peer_lost

}
return EXIT_SUCCESS;

Listener




Topics & Subscriptions

* Topics are encoded as (ASCII) strings, e.g., foo/bar

e Subscriptions match topics based on prefixes:

“OO0bar

00 Or :

e Subscribing to foo/ matches foo/bar, but not bar/:

 Zeek & Broker use slash-delimited hierarchies by convention



Pub/Sub: Zeek Scripts Basics

global my event:

redef exit only after terminate

event (msqg:

T

C.

string, count) ;

Subscriber

event zeek 1nit ()
{
Broker: :subscribe ("zeek/event/") ;
Broker::1listen("127.0.0.1");

J

event my event (msg: string, count)

{

print "got my event", msg,

J

C.

Cr

Publisher

Triggers my event

handlers on both
sides!

\\

event zeek 1init ()

{
Broker: :peer ("127.0.0.1");

J

event Broker::peer added(ep: Broker::EndpointInfo,
msg: string)

{

Broker::publish ("zeek/event/my event",

;77/ my event, "hi", 0);
J
event my event (msg: string, c: count)
{
print "got my event", msg, c;

J




Pub/Sub: Zeek Scripts Magic

global my event:

redef exit only after terminate

event (msqg:

T

string, c: count);

Subscriber

event zeek 1init ()
{

Broker: :subscribe ("zeek/event/") ;
Broker::1listen("127.0.0.1");

J

event my event (msg:

{
print "got my event", msg,

J

string, c¢: count)

Cr

Triggers my event

handlers on both sides
via implicit call to
Broker: :publish.

\

Publisher

event zeek 1init ()

{
Broker::peer ("127.0.0.1");

Broker::auto publish ("zeek/event/my event",
my event);

J

event Broker::peer added(ep: Broker::EndpointInfo,

msg: string)
{
—— event my event ("hi", 0);
J
event my event (msg: string, c: count)
{
print "got my event", msg, c;

J




Pub/Sub Summary

 /Zeek maps Broker messages to events

 General advise: subscribe before peer
 New subscriptions need some time to propagate
 Published data cannot be “re-captured” later (no buffering)

 Python and C++: publish and subscribe functions (blocking & async)



Data Stores

 Masters & clones attach to endpoints
 “Double duty” for peerings:

e Pub/Sub traffic

e Data store commands




Date Store Writes

Modification through master:

iImmediate replay to clones
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put (42,

Date Store Writes

\ fooll)

N

C

N—
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a send operation to master

put (42,

centralized replay through master
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e apply and replay operation

put (42,
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Data Stores in Zeek Scripts

global h: opaque of Broker::Store;

event zeek_init()
{
h = Broker: :create_master("mystore"):
# or: h = Broker: :create_clone("mystore");

# writing

Broker: :put(h, "one", 110):

Broker: :increment(h, "one"):

local myset: set[string] = {"a", "b", "c¢"};
Broker : :put(h, "myset", myset);

Broker: :insert_into_set(h, "myset", "d"):
Broker : :remove_from(h, "myset", "b"):

# reading
local res = Broker::get(h, "one"
print "one: ", res;

} :



Date Store Features

Increment/decrement operations for atomic updates on numbers
Add/remove functions for atomic updates on sets etc.
Key-value pairs optionally have an expiration time

Zeek can automagically synchronize table contents across clusters:

» global t: table[string] count é&backend=Broker::MEMORY;

Broker includes an SQLite backend for persistent state



Limitations & Outlook



Current Limitations

 Broker assumes loop-free topologies
o Simplifies forwarding logic and requires little state
* But: easy to misconfigure and no “fallback” routes on link errors

* Rigid peering connection hinder more use cases



Broker in Zeek Clusters Today

Based on simple TCP steam sockets
Endpoints see only direct peers / connections

State (subscriptions, forwarding flags) remains
mostly on the paths

Pro Conn

Little state per node  Easy to misconfigure

Simple dispatching  No redundancies

oai
o9Ic  Topology opaque
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manager Zeek
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Endpoint
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Transport
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Transport
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/

® Subscriptions per path
e Users must avoid/break loops
e TTL for events (loop safeguard)
e Uniform flow of data

— node message
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Introducing ALM

 (Goal: enable more use cases for Broker and increase robustness
e To overcome current restrictions, we combine:
e Application Layer Multicast (ALM) to express pub/sub on a higher level

* Source Routing to safely operate on “loopy” topologies



Based on Peer-to-Peer (P2P) Networking

Full visibility of cluster topology

(exception: Gateways)

State (subscriptions, routing) on the endpoints

Pro
Topology well known
Forwarding just works
Loops add resilience

Enables new use
cases, e.g., connecting
Zeek Agents

Conn

 More state per node

e More traffic

* Subscr. flooding

2

louting headers

Next-Gen Broker with Zeek
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® Subscriptions per endpoint
e Source routing breaks loops
© Routing table on each node

© Messages contain routing path
e No longer uniform flow of events
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Connecting Zeek Ag

agent-1
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e Gateway connects two domains Transport
e Agents see only their gateway
© No knowledge of cluster topology Broker
© No comm. overhead for agents Endpoint

e Gateway shields overlay from churn
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Transport
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Endpoint

worker-2




Thank You for Joining Today!

* Further Reading:

* https://docs.zeek.org/projects/broker

e https://docs.zeek.org/en/master/cluster-setup.html

e https://docs.zeek.org/en/master/frameworks/broker.html

* Get involved / get the sources / report bugs / file feature requests:

o« ® zeek/broker



https://docs.zeek.org/projects/broker
https://docs.zeek.org/en/master/cluster-setup.html
https://docs.zeek.org/en/master/frameworks/broker.html
https://github.com/zeek/broker

