
Broker
Zeek's Messaging Library

Dominik Charousset

http://dominik.charousset.de

May 2021

http://dominik.charousset.de

Zeek Clusters

An Idealized Zeek Cluster

(Distributed) Zeek Instances

How do they communicate?

Internet Local NetworkTap

Frontend

Packets

… …Worker Worker Worker

Manager

Logs

Proxy

State

Zeek Cluster Roles

• Worker: sniffs network traffic and runs protocol analysis

• Manager: collects events and creates a single, global view

• Proxy: offloads data storage or runs arbitrary work loads

• Logger: (optional) collects logs to reduce load on the manager

Zeek Cluster Challenges

• Data dependencies: which data an instance receives depends on the role

• Flexible deployment: users may add a logger and multiple proxies

• State synchronization: some modules / scripts need global view of events

• Interfacing with 3rd parties: users may want to integrate external tools

A Messaging Layer for Zeek
• We can fulfill our requirements with two building blocks:

1. A topic-based publish/subscribe layer

• Naturally models data dependencies via topics

• Supports flexible deployments (publisher/subscriber rendezvous)

2. Distributed key/value stores

• Global lookup and updates of values for synchronization

• Based on these considerations, implementing Broker started mid 2014

Broker Setup & API

Overview

• Open Source C++ library with Python bindings (BSD-licensed)

• Available on GitHub: https://github.com/zeek/broker

• Requires recent versions of CMake, OpenSSL and CAF

• Usually comes bundled with Zeek but also works as standalone library

https://github.com/zeek/broker
https://cmake.org/
https://www.openssl.org/
https://www.actor-framework.org/

Terminology

endpoint

M

C

master

clone

A single Broker context / process

Authoritative data store source

Local data store cache

Endpoints

• Broker connects endpoints via peering relations

• Each peering is a (TCP) network connection

• Endpoints forward published data to peers with matching subscriptions

Peerings

• Require manual setup of the topology (no auto connections / discovery)

• To open a TCP port for incoming peerings: listen(addr, port)

• To connect to another endpoint: peer(host, port)

• Caution: Broker assumes loop-free topologies!

‣ More on that later

Peering Setup: Zeek Scripts
redef exit_only_after_terminate = T;

event zeek_init()
 {
 Broker::listen("127.0.0.1");
 }

event Broker::peer_added(endpoint: Broker::EndpointInfo, msg: string)
 {
 print "peer added", endpoint;
 }

event Broker::peer_lost(endpoint: Broker::EndpointInfo, msg: string)
 {
 print "peer lost", endpoint;
 terminate();
 }

Listener

Passing no port uses
Broker::default_port (9999
by default, but you can override
the default via redef)

Peering Setup: Zeek Scripts
redef exit_only_after_terminate = T;

event zeek_init()
 {
 Broker::peer("127.0.0.1");
 }

event Broker::peer_added(endpoint: Broker::EndpointInfo, msg: string)
 {
 print "peer added", endpoint;
 terminate();
 }

Connector

Peering Setup: Python
import broker

with broker.Endpoint() as ep:
 with ep.make_status_subscriber(True) as ssub:
 ep.listen("127.0.0.1", 9999)
 state = ssub.get()
 # On a successful connect, we see:
 # state.code() == broker.SC.PeerAdded

import broker

with broker.Endpoint() as ep:
 with ep.make_status_subscriber(True) as ssub:
 ep.peer("127.0.0.1", 9999)
 state = ssub.get()
 # On a successful connect, we see:
 # state.code() == broker.SC.PeerAdded

Listener

Connector

Peering Setup: C++
 1 int main(int argc, char** argv) {
 2 using namespace broker;
 3 configuration cfg;
 4 cfg.init(argc, argv); // may throw!
 5 endpoint ep{std::move(cfg)};
 6 auto ssub = ep.make_status_subscriber(true);
 7 auto actual_port = ep.listen("127.0.0.1", 9999);
 8 if (actual_port == 0) {
 9 std::cerr << "unable to open port 9999\n";
 10 return EXIT_FAILURE;
 11 }
 12 auto stat = ssub.get();
 13 if (is<status>(stat)) {
 14 // contains a status, e.g., sc::peer_added
 15 } else if (is<error>(stat)) {
 16 // contains an error, e.g., ec::peer_lost
 17 }
 18 return EXIT_SUCCESS;
 19 }

Listener

Replace with
ep.peer(...) for
the connector.

Topics & Subscriptions

• Topics are encoded as (ASCII) strings, e.g., foo/bar

• Subscriptions match topics based on prefixes:

• Subscribing to foo/ matches foo/bar, but not bar/foo or foobar

• Zeek & Broker use slash-delimited hierarchies by convention

Pub/Sub: Zeek Scripts Basics
redef exit_only_after_terminate = T;

global my_event: event(msg: string, c: count);

event zeek_init()
 {
 Broker::peer("127.0.0.1");
 }

event Broker::peer_added(ep: Broker::EndpointInfo,
 msg: string)
 {
 Broker::publish("zeek/event/my_event",
 my_event, "hi", 0);
 }

event my_event(msg: string, c: count)
 {
 print "got my_event", msg, c;
 }

event zeek_init()
 {
 Broker::subscribe("zeek/event/");
 Broker::listen("127.0.0.1");
 }

event my_event(msg: string, c: count)
 {
 print "got my_event", msg, c;
 }

Triggers my_event
handlers on both
sides!

PublisherSubscriber

Pub/Sub: Zeek Scripts Magic
redef exit_only_after_terminate = T;

global my_event: event(msg: string, c: count);

event zeek_init()
 {
 Broker::peer("127.0.0.1");
 Broker::auto_publish("zeek/event/my_event",
 my_event);
 }

event Broker::peer_added(ep: Broker::EndpointInfo,
 msg: string)
 {
 event my_event("hi", 0);
 }

event my_event(msg: string, c: count)
 {
 print "got my_event", msg, c;
 }

event zeek_init()
 {
 Broker::subscribe("zeek/event/");
 Broker::listen("127.0.0.1");
 }

event my_event(msg: string, c: count)
 {
 print "got my_event", msg, c;
 }

Triggers my_event
handlers on both sides
via implicit call to
Broker::publish.

PublisherSubscriber

Pub/Sub Summary

• Zeek maps Broker messages to events

• General advise: subscribe before peer

• New subscriptions need some time to propagate

• Published data cannot be “re-captured” later (no buffering)

• Python and C++: publish and subscribe functions (blocking & async)

Data Stores

• Masters & clones attach to endpoints

• “Double duty” for peerings:

• Pub/Sub traffic

• Data store commands

M

C

M

C C

CC

Date Store Writes

Modification through master:
immediate replay to clones

M

CC

put(42, “foo”) put(42, “foo”)

Date Store Writes

M

CC

Modification through clone:
centralized replay through master

put(42, “foo”)

M

CC

put(42, “foo”) put(42, “foo”)

1 send operation to master 2 apply and replay operation

Data Stores in Zeek Scripts
global h: opaque of Broker::Store;

event zeek_init()
 {
 h = Broker::create_master("mystore");
 # or: h = Broker::create_clone("mystore");

 # writing
 Broker::put(h, "one", 110);
 Broker::increment(h, "one");
 local myset: set[string] = {"a", "b", "c"};
 Broker::put(h, "myset", myset);
 Broker::insert_into_set(h, "myset", "d");
 Broker::remove_from(h, "myset", "b");

 # reading
 local res = Broker::get(h, "one")
 print "one: ", res;
 }

Date Store Features
• Increment/decrement operations for atomic updates on numbers

• Add/remove functions for atomic updates on sets etc.

• Key-value pairs optionally have an expiration time

• Zeek can automagically synchronize table contents across clusters:

‣ global t: table[string] of count &backend=Broker::MEMORY;

• Broker includes an SQLite backend for persistent state

Limitations & Outlook

Current Limitations

• Broker assumes loop-free topologies

• Simplifies forwarding logic and requires little state

• But: easy to misconfigure and no “fallback” routes on link errors

• Rigid peering connection hinder more use cases

Broker in Zeek Clusters Today
• Based on simple TCP steam sockets

• Endpoints see only direct peers / connections

• State (subscriptions, forwarding flags) remains
mostly on the paths

worker-1 worker-2

logger manager

Stream
Transport

Stream
Transport

Stream
Transport

Stream
Transport

Broker
Endpoint

Broker
Endpoint

Broker
Endpoint

Broker
Endpoint

Zeek
Broker (Public API)
Broker (Internal)

● Subscriptions per path
● Users must avoid/break loops
● TTL for events (loop safeguard)
● Uniform flow of data
 → node_message

Pro

• Little state per node

• Simple dispatching
logic

Conn

• Easy to misconfigure

• No redundancies

• Topology opaque

Introducing ALM

• Goal: enable more use cases for Broker and increase robustness

• To overcome current restrictions, we combine:

• Application Layer Multicast (ALM) to express pub/sub on a higher level

• Source Routing to safely operate on “loopy” topologies

Next-Gen Broker with Zeek
• Based on Peer-to-Peer (P2P) Networking

• Full visibility of cluster topology 
(exception: Gateways)

• State (subscriptions, routing) on the endpoints

worker-1 worker-2

logger manager

ALM
Transport

ALM
Transport

ALM
Transport

ALM
Transport

Broker
Endpoint

Broker
Endpoint

Broker
Endpoint

Broker
Endpoint

Zeek
Broker (Public API)
Broker (Internal)

Pro

• Topology well known

• Forwarding just works

• Loops add resilience

• Enables new use
cases, e.g., connecting
Zeek Agents

Conn

• More state per node

• More traffic

• Subscr. flooding

• Routing headers

● Subscriptions per endpoint
● Source routing breaks loops
 ⊝ Routing table on each node
 ⊝ Messages contain routing path
● No longer uniform flow of events

Connecting Zeek Agents

worker-1 worker-2

logger manager

ALM
Transport

ALM
Transport

ALM
Transport

ALM
Transport

Broker
Endpoint

Broker
Endpoint

Broker
Endpoint

Broker
Endpoint

Zeek
Broker (Public API)
Broker (Internal)

ALM
Transport

Broker
Gateway

agent-1

ALM
Transport

Broker
Gateway

agent-n

ALM
Transport

Broker
Endpoint

○
○
○

● Gateway connects two domains
● Agents see only their gateway
 ⊝ No knowledge of cluster topology
 ⊝ No comm. overhead for agents
 ● Gateway shields overlay from churn

Thank You for Joining Today!
• Further Reading:

• https://docs.zeek.org/projects/broker

• https://docs.zeek.org/en/master/cluster-setup.html

• https://docs.zeek.org/en/master/frameworks/broker.html

• Get involved / get the sources / report bugs / file feature requests:

• zeek/broker

https://docs.zeek.org/projects/broker
https://docs.zeek.org/en/master/cluster-setup.html
https://docs.zeek.org/en/master/frameworks/broker.html
https://github.com/zeek/broker

