Broker
ZeeK's Messaging Library

Dominik Charousset

http://dominik.charousset.de

May 2021

corelight

http://dominik.charousset.de

Zeek Clusters

An ldealized Zeek Cluster

Tap

\4
[Frontend]

(Worker (Distributed) Zeek Instances

j gWo:ker] :V[Workerj

-
-
-
- -~
-
” ,”
/,
/’
-

[Manager]

How do they communicate?

—» Packets

= Logs
<t--I State ;

Zeek Cluster Roles

Worker: sniffs network traffic and runs protocol analysis
Manager: collects events and creates a single, global view
Proxy: offloads data storage or runs arbitrary work loads

Logger: (optional) collects logs to reduce load on the manager

Zeek Cluster Challenges

Data dependencies: which data an instance receives depends on the role
Flexible deployment: users may add a logger and multiple proxies
State synchronization: some modules / scripts need global view of events

Interfacing with 3rd parties: users may want to integrate external tools

A Messaging Layer for Zeek

* We can fulfill our requirements with two building blocks:
1. A topic-based publish/subscribe layer
 Naturally models data dependencies via topics
o Supports flexible deployments (publisher/subscriber rendezvous)
2. Distributed key/value stores
* Global lookup and updates of values for synchronization

 Based on these considerations, implementing Broker started mid 2014

Broker Setup & API

Overview

Open Source C++ library with Python bindings (BSD-licensed)

Available on GitHub: https://github.com/zeek/broker

Requires recent versions of CMake, OpenSSL and CAF

Usually comes bundled with Zeek but also works as standalone library

https://github.com/zeek/broker
https://cmake.org/
https://www.openssl.org/
https://www.actor-framework.org/

O

A
\/

[\ [
U\

[
\

Terminology

endpoint

master

clone

S

———

—_—

A single Broker context / process

Authoritative data store source

Local data store cache

Endpoints

O

* Broker connects endpoints via peering relations
 Each peering is a (TCP) network connection

 Endpoints forward published data to peers with matching subscriptions

Peerings

Require manual setup of the topology (no auto connections / discovery)

To open a TCP port for incoming peerings: 1isten (addr, port)
To connect to another endpoint: peer (host, port)

Caution: Broker assumes loop-free topologies!

> More on that later

Peering Setup: Zeek Scripts

event zeek 1nit ()

{

event

{
print "peer added",

J

event

{

print "peer lost",

()

J

redef exilt only after terminate = T;

("127.0.0.1"); <

(endpoint:

endpolnt;

(endpoint:

endpolnt;

Passing no port uses

the default via redef)

Broker::default port (9999
by default, but you can override

Broker: :EndpoilntInfo,

Broker: :EndpolntInfo,

msg :

msq :

string)

string)

Listener

Peering Setup: Zeek Scripts

redef exilt only after terminate = T;

event zeek 1nit ()

{
("127.0.0.1") ;

event (endpoint: Broker::EndpointInfo, msg: string)

{

print "peer added", endpoilint;

()
}

Connector

Peering Setup: Python

1mport broker

with broker.Endpoint() as ep:

with ep.make_status_subscriber(True) as ssub:

ep.listen("127.0.0.1", 9999)
state = ssub.get()
On a successful connect, we see:

state.code() == broker.SC.PeerAdded

Listener

1mport broker

with broker.Endpoint() as ep:
with ep.make_status_subscriber(True) as ssub:
ep.peer("127.0.0.1", 9999)
state = ssub.get()
On a successful connect, we see:
state.code() == broker.SC.PeerAdded

Connector

Peering Setup: C++

0O J O Ol W N =

L T G NG N N O (T S U
O 0O OO0 dhWOUDNDPLOO
——

int main(int argc, charxx argv) {

using namespace broker;
configuration cfg;
cfg.init(arge, argv); // may throw!

endpoint ep{std: :move(cfqg)};

auto ssub = ep.make_status_subscriber(true); Replace with

auto actual_port = ep.listen("127.0.0.1", 9999): << ep.peer(...) for
if (actual_port == 0) { the connector.

std: :cerr << "unable to open port 9999\n":
return EXIT_FAILURE;
}
auto stat = ssub.get();
if (is<status>(stat)) {
// contains a status, e.g., sc::peer_added
} else if (is<errory>(stat)) {
// contains an error, e.g., ec::peer_lost

}
return EXIT_SUCCESS;

Listener

Topics & Subscriptions

* Topics are encoded as (ASCII) strings, e.g., foo/bar

e Subscriptions match topics based on prefixes:

“OO0bar

00 Or :

e Subscribing to foo/ matches foo/bar, but not bar/:

 Zeek & Broker use slash-delimited hierarchies by convention

Pub/Sub: Zeek Scripts Basics

global my event:

redef exit only after terminate

event (msqg:

T

C.

string, count) ;

Subscriber

event zeek 1nit ()
{
Broker: :subscribe ("zeek/event/") ;
Broker::1listen("127.0.0.1");

J

event my event (msg: string, count)

{

print "got my event", msg,

J

C.

Cr

Publisher

Triggers my event

handlers on both
sides!

\\

event zeek 1init ()

{
Broker: :peer ("127.0.0.1");

J

event Broker::peer added(ep: Broker::EndpointInfo,
msg: string)

{

Broker::publish ("zeek/event/my event",

;77/ my event, "hi", 0);
J
event my event (msg: string, c: count)
{
print "got my event", msg, c;

J

Pub/Sub: Zeek Scripts Magic

global my event:

redef exit only after terminate

event (msqg:

T

string, c: count);

Subscriber

event zeek 1init ()
{

Broker: :subscribe ("zeek/event/") ;
Broker::1listen("127.0.0.1");

J

event my event (msg:

{
print "got my event", msg,

J

string, c¢: count)

Cr

Triggers my event

handlers on both sides
via implicit call to
Broker: :publish.

\

Publisher

event zeek 1init ()

{
Broker::peer ("127.0.0.1");

Broker::auto publish ("zeek/event/my event",
my event);

J

event Broker::peer added(ep: Broker::EndpointInfo,

msg: string)
{
—— event my event ("hi", 0);
J
event my event (msg: string, c: count)
{
print "got my event", msg, c;

J

Pub/Sub Summary

 /Zeek maps Broker messages to events

 General advise: subscribe before peer
 New subscriptions need some time to propagate
 Published data cannot be “re-captured” later (no buffering)

 Python and C++: publish and subscribe functions (blocking & async)

Data Stores

 Masters & clones attach to endpoints
 “Double duty” for peerings:

e Pub/Sub traffic

e Data store commands

Date Store Writes

Modification through master:

iImmediate replay to clones

)
"~

M

put (42, “foo”) put (42, “foo”)

put (42,

Date Store Writes

\ fooll)

N

C

N—

Modification through clone:

N

C

N—

a send operation to master

put (42,

centralized replay through master

\\fOO//)

e apply and replay operation

put (42,

W\ fooll)

Data Stores in Zeek Scripts

global h: opaque of Broker::Store;

event zeek_init()
{
h = Broker: :create_master("mystore"):
or: h = Broker: :create_clone("mystore");

writing

Broker: :put(h, "one", 110):

Broker: :increment(h, "one"):

local myset: set[string] = {"a", "b", "c¢"};
Broker : :put(h, "myset", myset);

Broker: :insert_into_set(h, "myset", "d"):
Broker : :remove_from(h, "myset", "b"):

reading
local res = Broker::get(h, "one"
print "one: ", res;

} :

Date Store Features

Increment/decrement operations for atomic updates on numbers
Add/remove functions for atomic updates on sets etc.
Key-value pairs optionally have an expiration time

Zeek can automagically synchronize table contents across clusters:

» global t: table[string] count é&backend=Broker::MEMORY;

Broker includes an SQLite backend for persistent state

Limitations & Outlook

Current Limitations

 Broker assumes loop-free topologies
o Simplifies forwarding logic and requires little state
* But: easy to misconfigure and no “fallback” routes on link errors

* Rigid peering connection hinder more use cases

Broker in Zeek Clusters Today

Based on simple TCP steam sockets
Endpoints see only direct peers / connections

State (subscriptions, forwarding flags) remains
mostly on the paths

Pro Conn

Little state per node Easy to misconfigure

Simple dispatching No redundancies

oai
o9Ic Topology opaque

logger

manager Zeek

Broker
Endpoint

Broker
Endpoint

Stream
Transport

Stream
Transport

Broker (Public API)
Broker (Internal)

zal
/

® Subscriptions per path
e Users must avoid/break loops
e TTL for events (loop safeguard)
e Uniform flow of data

— node message

Stream
Transport

Stream
Transport

Broker
Endpoint

Broker
Endpoint

worker-1

worker-2

Introducing ALM

 (Goal: enable more use cases for Broker and increase robustness
e To overcome current restrictions, we combine:
e Application Layer Multicast (ALM) to express pub/sub on a higher level

* Source Routing to safely operate on “loopy” topologies

Based on Peer-to-Peer (P2P) Networking

Full visibility of cluster topology

(exception: Gateways)

State (subscriptions, routing) on the endpoints

Pro
Topology well known
Forwarding just works
Loops add resilience

Enables new use
cases, e.g., connecting
Zeek Agents

Conn

 More state per node

e More traffic

* Subscr. flooding

2

louting headers

Next-Gen Broker with Zeek

logger

manager

Broker
Endpoint

Broker
Endpoint

ALM
Transport

ALM
Transport

Zeek
Broker (Public API)
Broker (Internal)

® Subscriptions per endpoint
e Source routing breaks loops
© Routing table on each node

© Messages contain routing path
e No longer uniform flow of events

ALM
Transport

ALM
Transport

Broker
Endpoint

Broker
Endpoint

worker-1

worker-2

Connecting Zeek Ag

agent-1

Broker
Gateway

ALM
Transport

O

ALM
Transport

ents

manager

Zeek
Broker (Public API)
Broker (Internal)

Broker
Endpoint

ALM
Transport

Broker
Endpoint

agent-n

logger
Broker
Endpoint
ALM
Transport
Broker
g - Gateway
>. ALM o
Transport
&
%\\
_ ALM
e Gateway connects two domains Transport
e Agents see only their gateway
© No knowledge of cluster topology Broker
© No comm. overhead for agents Endpoint

e Gateway shields overlay from churn

ALM
Transport

worker-1

Broker
Endpoint

worker-2

Thank You for Joining Today!

* Further Reading:

* https://docs.zeek.org/projects/broker

e https://docs.zeek.org/en/master/cluster-setup.html

e https://docs.zeek.org/en/master/frameworks/broker.html

* Get involved / get the sources / report bugs / file feature requests:

o« ® zeek/broker

https://docs.zeek.org/projects/broker
https://docs.zeek.org/en/master/cluster-setup.html
https://docs.zeek.org/en/master/frameworks/broker.html
https://github.com/zeek/broker

